dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Sukissian, L |
en |
dc.date.accessioned |
2014-03-01T02:48:06Z |
|
dc.date.available |
2014-03-01T02:48:06Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33522 |
|
dc.subject |
Least Square |
en |
dc.subject |
Linear Predictive |
en |
dc.subject |
Network Architecture |
en |
dc.subject |
Prior Information |
en |
dc.subject |
Recursive Estimation |
en |
dc.subject |
Neural Network |
en |
dc.title |
Adaptive segmentation of textured images using linear prediction and neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/NNSP.1992.253672 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/NNSP.1992.253672 |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
An adaptive technique for classifying and segmenting textured images is presented. This technique uses an efficient least squares algorithm for recursive estimation of two-dimensional autoregressive texture models and neural networks for recursive classification of the models. A network with fixed, but space-varying, interconnection weights is used to optimally select a small representative set of these models, while a network with |
en |
heal.journalName |
IEEE XIII Workshop on Neural Networks for Signal Processing |
en |
dc.identifier.doi |
10.1109/NNSP.1992.253672 |
en |