dc.contributor.author |
Brockett, R |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:48:06Z |
|
dc.date.available |
2014-03-01T02:48:06Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33529 |
|
dc.subject |
Algebraic Function |
en |
dc.subject |
Differential Operators |
en |
dc.subject |
Evolution Equation |
en |
dc.subject |
Morphological Operation |
en |
dc.subject |
Nonlinear Partial Differential Equation |
en |
dc.subject |
Scale Space |
en |
dc.title |
Evolution equations for continuous-scale morphology |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICASSP.1992.226260 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICASSP.1992.226260 |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Several nonlinear partial differential equations that model the scale evolution associated with continuous-space multiscale morphological erosions, dilations, openings, and closings are discussed. These systems relate the infinitesimal evolution of the multiscale signal ensemble in scale space to a nonlinear operator acting on the space of signals. The type of this nonlinear operator is determined by the shape and dimensionality of |
en |
heal.journalName |
International Conference on Acoustics, Speech, and Signal Processing |
en |
dc.identifier.doi |
10.1109/ICASSP.1992.226260 |
en |