dc.contributor.author |
Kaloyeras Dimitrios, K |
en |
dc.contributor.author |
Kollias Stefanos, D |
en |
dc.date.accessioned |
2014-03-01T02:48:07Z |
|
dc.date.available |
2014-03-01T02:48:07Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33546 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027003825&partnerID=40&md5=350babfdfd0d036403ac7cff0c6a6856 |
en |
dc.subject.other |
Classification (of information) |
en |
dc.subject.other |
Color image processing |
en |
dc.subject.other |
Fractals |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.subject.other |
Fractal modeling |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Multichannel fractal modeling |
en |
dc.subject.other |
Segmentation |
en |
dc.subject.other |
Image analysis |
en |
dc.title |
Image classification and segmentation using multichannel fractal modeling |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Multichannel fractal modelling of the color images is proposed in this paper as an efficient tool for image classification and segmentation. An extension of the fractal dimension to appropriate matrix forms is used for this purpose, showing that it leads to more accurate representations of the original images. Various factors affecting these representations are investigated while artificial neural networks are used to classify the derived feature sets and segment the images. |
en |
heal.publisher |
Publ by Int Soc for Optical Engineering, Bellingham, WA, United States |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.volume |
1818 |
en |
dc.identifier.issue |
pt 3 |
en |
dc.identifier.spage |
950 |
en |
dc.identifier.epage |
957 |
en |