dc.contributor.author |
Tigelis, IG |
en |
dc.contributor.author |
Vomvoridis, JL |
en |
dc.date.accessioned |
2014-03-01T02:48:07Z |
|
dc.date.available |
2014-03-01T02:48:07Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33550 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026988205&partnerID=40&md5=16b55cffc9022863634ab4e09082dcfa |
en |
dc.subject.other |
Cavity resonators |
en |
dc.subject.other |
Cyclotron resonance |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Electron beams |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Adiabatic magnicons |
en |
dc.subject.other |
Magnicons |
en |
dc.subject.other |
Electron tubes |
en |
dc.title |
Nonlinear analysis of an adiabatic magnicon |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this paper, the authors have studied the nonlinear performance of an adiabatic magnicon with given geometry. The electron beam is assumed to be initially unmodulated, monoenergetic with only axial velocity for each constituent electron and infinitesimally thin. In each cavity the radiation fields are described by electric and magnetic field amplitudes to represent a guided mode with given phase velocity. A magnetostatic field is directed along the axis of the system. |
en |
heal.publisher |
Publ by Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, United States |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.volume |
1929 |
en |
dc.identifier.spage |
66 |
en |
dc.identifier.epage |
67 |
en |