HEAL DSpace

Trifluoroethanol/N-Methylpyrrolidinone absorption heat pump for floor heating

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Antonopoulos, KA en
dc.contributor.author Rogdakis, ED en
dc.date.accessioned 2014-03-01T02:48:08Z
dc.date.available 2014-03-01T02:48:08Z
dc.date.issued 1992 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33559
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0026962709&partnerID=40&md5=5c41c87f61f79ac32f6d468f67dec630 en
dc.subject.other Energy conservation en
dc.subject.other Floors en
dc.subject.other Heat transfer en
dc.subject.other Mathematical models en
dc.subject.other Nomograms en
dc.subject.other Pipe en
dc.subject.other Refrigerants en
dc.subject.other Thermoanalysis en
dc.subject.other Thermodynamics en
dc.subject.other Absorption heat pump en
dc.subject.other Floor heating en
dc.subject.other N-Methylpyrrolidinone (NMP) en
dc.subject.other Trifluoroethanol (TFE) en
dc.subject.other Heat pump systems en
dc.title Trifluoroethanol/N-Methylpyrrolidinone absorption heat pump for floor heating en
heal.type conferenceItem en
heal.publicationDate 1992 en
heal.abstract A thermodynamic and thermal analysis is conducted for an energy system composed of a solar driven absorption heat pump using Trifluoroethanol (TFE) and N-Methylpyrrolidinone (NMP) as refrigerant and absorbent, respectively, and a floor heating unit composed of regularly spaced pipes imbedded in the floor of a building. Such systems may offer considerable energy savings because: (a) thermal comfort is obtained with lower temperatures owing to direct contact of people's feet with the heat source, (b) lower heating fluid temperatures are adequate owing to the available large heat exchange surfaces, and (c) heat storage within structural elements may decrease peak load. The analysis presented is based on developed analytic expressions for the thermodynamic properties of the TFE-NMP mixture in conjunction with a procedure which simulates the operation of the corresponding absorption heat pump and provides its exact thermodynamic cycle. The analysis is supplemented by a model which simulates the thermal behaviour of the floor containing the heating pipes. Predictions are presented for operation during the typical winter in the Athens area. Nomographs are also presented for selecting the floor pipe spacing which ensures best thermal matching between the floor and the heat pump. It is found that the theoretical heat gain factor varies from 150-170% and the maximum thermal power produced for 40°C mean floor temperature during November, January and March is 360, 250 and 500 W/m2-floor, respectively. en
heal.publisher Publ by ASME, New York, NY, United States en
heal.journalName American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES en
dc.identifier.volume 27 en
dc.identifier.spage 309 en
dc.identifier.epage 314 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής