dc.contributor.author |
Tsinias, John |
en |
dc.date.accessioned |
2014-03-01T02:48:08Z |
|
dc.date.available |
2014-03-01T02:48:08Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
01912216 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33560 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026618558&partnerID=40&md5=cc0415a8f439aa80f3739e4e15b47fb8 |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.subject.other |
Feedback stabilizers |
en |
dc.subject.other |
Global stabilizability problems |
en |
dc.subject.other |
State stability condition |
en |
dc.subject.other |
System stability |
en |
dc.title |
Versions of Sontag's 'Input to state stability condition' and the global stabilizability problem |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
The author deals with the global feedback stabilizability problem for interconnected nonlinear systems that are affine in the control. The purpose is to provide sufficient Lyapunov-like conditions for global stabilization. The corresponding feedback stabilizers are supposed to be almost smooth real mappings. |
en |
heal.publisher |
Publ by IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings of the IEEE Conference on Decision and Control |
en |
dc.identifier.spage |
73 |
en |
dc.identifier.epage |
74 |
en |