dc.contributor.author |
Curran, A |
en |
dc.contributor.author |
Kyriakopoulos, K |
en |
dc.date.accessioned |
2014-03-01T02:48:10Z |
|
dc.date.available |
2014-03-01T02:48:10Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33598 |
|
dc.subject |
Dead Reckoning |
en |
dc.subject |
extended kalman filter |
en |
dc.subject |
Indoor Environment |
en |
dc.subject |
Infrared |
en |
dc.subject |
Mobile Robot |
en |
dc.subject |
Wheeled Mobile Robot |
en |
dc.title |
Sensor-Based Self-Localization for Wheeled Mobile Robots |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ROBOT.1993.291954 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ROBOT.1993.291954 |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
A reliable and robust algorithm for localizing a mobile robot in an indoor environment that is relatively consistent with an a priori map is demonstrated. The algorithm uses an extended Kalman filter that combines dead-reckoning, ultrasonic, and infrared sensor data to estimate current position and orientation. Through a thresholding approach, unexpected obstacles can be detected. Experimental results from implementation in |
en |
heal.journalName |
International Conference on Robotics and Automation |
en |
dc.identifier.doi |
10.1109/ROBOT.1993.291954 |
en |