dc.contributor.author |
Katsikadelis, JT |
en |
dc.contributor.author |
Nerantzaki, MS |
en |
dc.date.accessioned |
2014-03-01T02:48:12Z |
|
dc.date.available |
2014-03-01T02:48:12Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33622 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027847513&partnerID=40&md5=ed53ce2a8fe800060a98938b5c9f43ca |
en |
dc.subject.other |
Bending (deformation) |
en |
dc.subject.other |
Deflection (structures) |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Fictitious loads |
en |
dc.subject.other |
Large deflections |
en |
dc.subject.other |
Load distributions |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.title |
Non-linear analysis of plates by the analog equation method |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
The analog equation method is applied to large deflection analysis of thin elastic plates. The Von-Karman plate theory is adopted. The deflection and the stress function of the non-linear problem are established by solving two linear uncoupled plate bending problems under the same boundary conditions subjected to 'appropriate' (equivalent) fictitious loads. Numerical examples are presented which illustrate the efficiency and the accuracy of the proposed method. |
en |
heal.publisher |
Publ by Computational Mechanics Publ, Southampton, United Kingdom |
en |
heal.journalName |
Boundary Element XV: Stress Analysis |
en |
dc.identifier.spage |
165 |
en |
dc.identifier.epage |
178 |
en |