dc.contributor.author |
Goh, K |
en |
dc.contributor.author |
Safonovt, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T02:48:12Z |
|
dc.date.available |
2014-03-01T02:48:12Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33633 |
|
dc.subject |
Global Optimization |
en |
dc.subject |
Local Minima |
en |
dc.subject |
Matrix Inequalities |
en |
dc.subject |
Multiple Objectives |
en |
dc.subject |
Optimization Technique |
en |
dc.subject |
Robust Control |
en |
dc.subject |
Symmetric Matrices |
en |
dc.subject |
Branch and Bound |
en |
dc.title |
A global optimization approach for the BMI problem |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.1994.411445 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.1994.411445 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
The biaffine matrix inequality (BMI) is a potentially very flexible new framework for approaching complex robust control system synthesis problems with multiple plants, multiple objectives and controller order constraints. The BMI problem may be viewed as the nondifferentiable biconvex programming problem of minimizing the maximum eigenvalue of a biaffine combination of symmetric matrices. The BMI problem is non-local-global in general, |
en |
heal.journalName |
Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.1994.411445 |
en |