dc.contributor.author |
Goh, K |
en |
dc.contributor.author |
Turan, L |
en |
dc.contributor.author |
Safonov, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.contributor.author |
Ly, J |
en |
dc.date.accessioned |
2014-03-01T02:48:13Z |
|
dc.date.available |
2014-03-01T02:48:13Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33639 |
|
dc.subject |
Computational Method |
en |
dc.subject |
Global Optimization |
en |
dc.subject |
Matrix Inequalities |
en |
dc.subject |
nonsmooth optimization |
en |
dc.subject |
Robust Control |
en |
dc.subject |
Symmetric Matrices |
en |
dc.title |
Biaffine matrix inequality properties and computational methods |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ACC.1994.751863 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ACC.1994.751863 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Many robust control synthesis problems, including μ/km-synthesis, have been shown to be reducible to the problem of finding a feasible point under a biaffine matrix inequality (BMI) constraint. The paper discusses the related problem of minimizing the maximum eigenvalue of a biaffine combination of symmetric matrices, a biconvex, nonsmooth optimization problem. Various properties of the problem are examined and several |
en |
heal.journalName |
American Control Conference |
en |
dc.identifier.doi |
10.1109/ACC.1994.751863 |
en |