dc.contributor.author |
Delopoulos, A |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:48:14Z |
|
dc.date.available |
2014-03-01T02:48:14Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33657 |
|
dc.subject |
Adaptive Algorithm |
en |
dc.subject |
Additive Noise |
en |
dc.subject |
Design Technique |
en |
dc.subject |
Filter Design |
en |
dc.subject |
kronecker product |
en |
dc.subject |
Mean Square Error |
en |
dc.subject |
Perfect Reconstruction |
en |
dc.subject |
Second Order Statistics |
en |
dc.subject |
Signal Reconstruction |
en |
dc.subject |
Subband Coding |
en |
dc.subject |
Filter Bank |
en |
dc.title |
Optimal filterbanks for signal reconstruction from noisy subband components |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ACSSC.1994.471608 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ACSSC.1994.471608 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Conventional design techniques for analysis and synthesis filters in subband processing applications guarantee perfect reconstruction of the original signal from its subband components. The resulting filters lose, however, their optimality when additive noise, due for example, to signal quantization, disturbs the subband sequences. In this paper, we propose filter design techniques that minimize the reconstruction mean squared error taking into |
en |
heal.journalName |
Asilomar Conference on Signals, Systems & Computers |
en |
dc.identifier.doi |
10.1109/ACSSC.1994.471608 |
en |