dc.contributor.author |
Zagorianos, A |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Dimou, P |
en |
dc.date.accessioned |
2014-03-01T02:48:16Z |
|
dc.date.available |
2014-03-01T02:48:16Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33677 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028745941&partnerID=40&md5=d0686012e5dfd480be236ade4e23c2ef |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Joints (structural components) |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Manipulators |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Redundancy |
en |
dc.subject.other |
Velocity control |
en |
dc.subject.other |
Hamiltonian principle |
en |
dc.subject.other |
Lagrangian equations |
en |
dc.subject.other |
Redundant robots |
en |
dc.subject.other |
Robots |
en |
dc.title |
Global optimization technique for velocity control of redundant robots |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
Kinematic and control considerations of redundant robots, i.e. robots with more than six axes of motion are currently of increasing interest. The inverse kinematic problem of such robots is treated here by taking into account both the system dynamics, expressed by its Lagrangian L, and the kinematic constraints of the robot. As an objective criterion the Hamilton principle is adopted which states that the actual path in the configuration space renders the value of the definite integral I = ∫t(1)t(2)I,dt stationary with respect to all arbitrary variations of the path between two time instants t1 and t2. Hence one asks for the best set of solutions which minimize the above integral, over the robot path, while the kinematic equation x = J(q)q of the manipulator holds. But the stationary of the Hamilton principle implies the satisfaction of the Euler-Lagrange equations. Thus the joints of the manipulator are forced to follow the optimum path, obeying, at each time, the dynamic equations of the system. A numerical example concerning a robotic manipulator with one degree of redundancy illustrates the method. |
en |
heal.publisher |
Computational Mechanics Publ |
en |
heal.journalName |
[No source information available] |
en |
dc.identifier.spage |
219 |
en |
dc.identifier.epage |
223 |
en |