HEAL DSpace

Implementation and performance of Arnoldi and Lanczos eigensolvers in Galerkin-finite element computations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadopoulos, D en
dc.contributor.author Siettos, C en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Chronopoulos, AT en
dc.date.accessioned 2014-03-01T02:48:16Z
dc.date.available 2014-03-01T02:48:16Z
dc.date.issued 1994 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33679
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0028729642&partnerID=40&md5=627daf06921be28806944867258716ce en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Ferromagnetic materials en
dc.subject.other Interfaces (materials) en
dc.subject.other Linearization en
dc.subject.other Magnetic fields en
dc.subject.other Matrix algebra en
dc.subject.other Nonlinear equations en
dc.subject.other Partial differential equations en
dc.subject.other Vectors en
dc.subject.other Arnoldi and Lanczos eigensolvers en
dc.subject.other Galerkin method en
dc.subject.other Finite element method en
dc.title Implementation and performance of Arnoldi and Lanczos eigensolvers in Galerkin-finite element computations en
heal.type conferenceItem en
heal.publicationDate 1994 en
heal.abstract The methods of Arnoldi and Lanczos are implemented for solving large and sparse eigenvalue problems. Such problems arise in the computation of stability of solutions of parameter-dependent, nonlinear partial differential equations discretized by the Galerkin/finite element method. Results are presented for the stability of equilibrium solutions of axisymmetric ferromagnetic liquid interfaces in external magnetic field of varying strength. en
heal.publisher Civil-Comp Limited, Edinburgh, United Kingdom en
heal.journalName International Conference on Computational Structures Technology - Proceedings en
dc.identifier.spage 253 en
dc.identifier.epage 261 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής