dc.contributor.author |
Lazopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T02:48:16Z |
|
dc.date.available |
2014-03-01T02:48:16Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33681 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028739632&partnerID=40&md5=0169bd8f6001251664d83873f237952f |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Branching analysis |
en |
dc.subject.other |
Energy function |
en |
dc.subject.other |
Equilibrium paths |
en |
dc.subject.other |
Orthogonalization |
en |
dc.subject.other |
Post critical paths |
en |
dc.subject.other |
Taylor expansion |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
Location of bifurcation points and branching analysis in generalised coordinates |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
In this paper branching analysis of elastic systems expressed in generalized coordinates will be discussed. The critical points and the post-critical paths will be described for simple but especially for double branching problems without requiring elimination of passive coordinates or orthogonalization of the energy function. The method is an indispensable tool for studies of stability problems through the finite element technique. |
en |
heal.publisher |
Civil-Comp Limited, Edinburgh, United Kingdom |
en |
heal.journalName |
International Conference on Computational Structures Technology - Proceedings |
en |
dc.identifier.spage |
41 |
en |
dc.identifier.epage |
44 |
en |