dc.contributor.author |
Mesbahi, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.contributor.author |
Safonov, M |
en |
dc.date.accessioned |
2014-03-01T02:48:18Z |
|
dc.date.available |
2014-03-01T02:48:18Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33717 |
|
dc.subject |
Bilinear Matrix Inequality |
en |
dc.subject |
Complementarity Problem |
en |
dc.subject |
Linear Complementarity Problem |
en |
dc.subject |
Linear Program |
en |
dc.title |
Matrix cones, complementarity problems, and the bilinear matrix inequality |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.1995.478622 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.1995.478622 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Discusses an approach for solving the bilinear matrix inequality (BMI) based on its connections with certain problems defined over matrix cones. These problems are, among others, the cone generalization of the linear programming (LP) and the linear complementarity problem (LCP) (referred to as the Cone-LP and the Cone-LCP, respectively). Specifically, the authors show that solving a given BMI is equivalent |
en |
heal.journalName |
Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.1995.478622 |
en |