dc.contributor.author |
Mesbahi, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T02:48:22Z |
|
dc.date.available |
2014-03-01T02:48:22Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33770 |
|
dc.subject |
Complexity Theory |
en |
dc.subject |
Computational Efficiency |
en |
dc.subject |
Dynamic System |
en |
dc.subject |
Robustness Analysis |
en |
dc.subject |
Interior Point Method |
en |
dc.title |
LMIs, interior point methods, complexity theory, and robustness analysis |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.1996.577603 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.1996.577603 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Let δΣ be a measure of the relative stability of a stable dynamical system Σ. Let τA(Σ) be a measure of the computational efficiency of a particular algorithm A which verifies the stability property of Σ. For two representative cases of Σ, we demonstrate the existence of a particular measure δΣ and an algorithm A such that, δΣτA(Σ)=c where c |
en |
heal.journalName |
Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.1996.577603 |
en |