dc.contributor.author | Panou-Diamanti, O | en |
dc.contributor.author | Uzunoglou, NK | en |
dc.contributor.author | Koutsouris, D | en |
dc.date.accessioned | 2014-03-01T02:48:27Z | |
dc.date.available | 2014-03-01T02:48:27Z | |
dc.date.issued | 1996 | en |
dc.identifier.issn | 0277786X | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/33813 | |
dc.subject | Inelastic scattering | en |
dc.subject | Tissue fluorescence | en |
dc.subject | Tissue optics | en |
dc.subject.other | Biopsy | en |
dc.subject.other | Electric fields | en |
dc.subject.other | Electromagnetic fields | en |
dc.subject.other | Electromagnetic wave scattering | en |
dc.subject.other | Electromagnetism | en |
dc.subject.other | Emission spectroscopy | en |
dc.subject.other | Fluorescence | en |
dc.subject.other | Functions | en |
dc.subject.other | Inelastic scattering | en |
dc.subject.other | Light | en |
dc.subject.other | Polarization | en |
dc.subject.other | Scattering | en |
dc.subject.other | Vectors | en |
dc.subject.other | Continuous spectrums | en |
dc.subject.other | Dielectric layers | en |
dc.subject.other | Electromagnetic scatterings | en |
dc.subject.other | Emission frequencies | en |
dc.subject.other | Excitation frequencies | en |
dc.subject.other | Field components | en |
dc.subject.other | Light frequencies | en |
dc.subject.other | Polarization vectors | en |
dc.subject.other | Pulse excitations | en |
dc.subject.other | Rigorous approaches | en |
dc.subject.other | Scattered waves | en |
dc.subject.other | Spatial points | en |
dc.subject.other | Tissue optics | en |
dc.subject.other | Tissue | en |
dc.title | Study of tissue fluorescence based on electromagnetic inelastic scattering theory | en |
heal.type | conferenceItem | en |
heal.identifier.primary | 10.1117/12.237572 | en |
heal.identifier.secondary | http://dx.doi.org/10.1117/12.237572 | en |
heal.publicationDate | 1996 | en |
heal.abstract | In this study a rigorous approach to tissue fluorescence is presented, based on the study of tissue fluorescence as an electromagnetic scattering problem. Fluorescence scattered wave is treated by taking a continuous spectrum distribution in a region of frequencies lower and equal to the excitation frequency. The existence of inelastic field components can be considered as a result of the particular form, that the polarization of the irradiated medium has. In order to provide the most general formulation, the polarization vector P for the observed light frequency ω can be written as P(r,ω) = ∫ω oω dω'E(r,ω')τ (ω,ω'), where E(r,ω') is the electric field at the excitation frequency ω' and (tau) (ω,ω') the transfer permittivity function from ω' at the spatial point r, to the emission frequency ω , measured at the same point. Substitution of the polarization vector into the electromagnetic field equations leads to a formulation of the inelastic field components. The model used is based on considering tissue as a single dielectric layer, under pulse excitation. The theoretical background for such an evaluation, together with the mathematical technique used and the theoretical results, are presented. ©2004 Copyright SPIE - The International Society for Optical Engineering. | en |
heal.journalName | Proceedings of SPIE - The International Society for Optical Engineering | en |
dc.identifier.doi | 10.1117/12.237572 | en |
dc.identifier.volume | 2679 | en |
dc.identifier.spage | 71 | en |
dc.identifier.epage | 78 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |