dc.contributor.author |
Vlassis, N |
en |
dc.contributor.author |
Dimopoulos, A |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.date.accessioned |
2014-03-01T02:48:29Z |
|
dc.date.available |
2014-03-01T02:48:29Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33858 |
|
dc.subject |
k-means clustering |
en |
dc.subject |
Mobile Robot |
en |
dc.subject |
Parametric Model |
en |
dc.subject |
Probability Density Function |
en |
dc.subject |
Recursive Estimation |
en |
dc.title |
The Probabilistic Growing Cell Structures Algorithm |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/BFb0020228 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BFb0020228 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The growing cell structures (GCS) algorithm is an adaptive k-means clustering algorithm in which new clusters are added dynamically to produce a Dirichlet tessellation of the input space. In this paper we extend the non-parametric model of the GCS into a probabilistic one, assuming that samples are distributed in each cluster according to a multi-variate normal probability density function. We |
en |
heal.journalName |
Int. Conference on Artificial Neural Networks |
en |
dc.identifier.doi |
10.1007/BFb0020228 |
en |