HEAL DSpace

Incorporating neural networks into gas turbine performance diagnostics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kanelopoulos, K en
dc.contributor.author Stamatis, A en
dc.contributor.author Mathioudakis, K en
dc.date.accessioned 2014-03-01T02:48:33Z
dc.date.available 2014-03-01T02:48:33Z
dc.date.issued 1997 en
dc.identifier.issn 04021215 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33886
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031373667&partnerID=40&md5=303bc20eb84952f94b11981079a46ec3 en
dc.subject.other Decision theory en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Sensors en
dc.subject.other Gas turbine diagnostics en
dc.subject.other Gas turbines en
dc.title Incorporating neural networks into gas turbine performance diagnostics en
heal.type conferenceItem en
heal.publicationDate 1997 en
heal.abstract Possibilities of incorporating neural nets in different tasks of a gas turbine performance diagnostic procedure are investigated. The purpose is to examine how neural nets can be implemented and what advantages they may offer. First, the possibility to constitute a performance model by using neural nets is considered. Different modes of operation are examined and the neural net architectures for achieving better accuracy are discussed. Subsequently, different problems of fault detection and identification are considered. Classification of faults is performed on the basis of diagnostic parameters produced by adaptive modelling. Both sensor faults and actual engine component faults are examined. A decision logic based on several neural nets is proposed. At a first level it is decided whether a fault exists, and if yes, checks are performed in order to identify the fault in as much detail as possible. Summarizing, the paper discusses different aspects of neural net implementation, in an effort to provide guidelines for application of this type of technique in the field of gas turbine diagnostics. en
heal.publisher ASME, New York, NY, United States en
heal.journalName American Society of Mechanical Engineers (Paper) en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής