dc.contributor.author |
Tzabiras, GD |
en |
dc.date.accessioned |
2014-03-01T02:48:33Z |
|
dc.date.available |
2014-03-01T02:48:33Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
1369734X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33899 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030681205&partnerID=40&md5=8b528c2dbcdf1e2d18d24e4612bad3db |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
Hydrofoils |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Non orthogonal H type grid |
en |
dc.subject.other |
Reynolds equations |
en |
dc.subject.other |
Two dimensional free surface flows |
en |
dc.subject.other |
Numerical methods |
en |
dc.title |
Numerical calculation of 2D free surface flows |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
A finite volume method is applied to calculate the steady free surface flow around a submerged hydrofoil moving at steady forward speed. The Reynolds equations are solved in a body fitted non-orthogonal H-type grid and the k-ε model is adopted to simulate the turbulent stresses. The wave pattern above the body is calculated following an iterative Lagrangian procedure to satisfy both the kinematic and dynamic free-surface boundary conditions. The main objective of the work is to improve the convergence rate of this procedure. |
en |
heal.publisher |
Computational Mechanics Publ, Southampton, United Kingdom |
en |
heal.journalName |
Proceedings of the International Conference on Computational Methods and Experimental Measurements, CMEM |
en |
dc.identifier.spage |
361 |
en |
dc.identifier.epage |
370 |
en |