dc.contributor.author |
Panou-Diamandi, O |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Vasiliou, A |
en |
dc.contributor.author |
Zacharakis, G |
en |
dc.contributor.author |
Filippidis, G |
en |
dc.contributor.author |
Papazoglou, T |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.date.accessioned |
2014-03-01T02:48:34Z |
|
dc.date.available |
2014-03-01T02:48:34Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33913 |
|
dc.subject |
Inelastic scattering |
en |
dc.subject |
Tissue fluorescence |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Inelastic scattering |
en |
dc.subject.other |
Tissue fluorescence |
en |
dc.subject.other |
Fluorescence |
en |
dc.title |
Use of the polarisation vector in modelling tissue fluorescence: Theoretical and experimental comparison |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.297953 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.297953 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
This paper describes an innovative approach to tissue fluorescence as a phenomenon of inelastic scattering of electromagnetic radiation. A general formulation of the polarisation vector of the medium is used in order to describe the fluorescence inelastic scattering process. The general method described, is applied to two different tissue models. In the first model, tissue is represented as a single infinitely thick, homogeneous layer, under plane wave excitation. The second model used is based on a picture of tissue as a single dielectric layer, under pulse excitation. In both cases, fluorophores and absorbing species are assumed to be homogeneously distributed inside tissue. The mathematical techniques used together with the fully evaluated theoretical results are presented. Additionally, experimental measurements were performed on collagen gels which contained various dyes in order to evaluate and validate our mathematical modelling. |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.doi |
10.1117/12.297953 |
en |
dc.identifier.volume |
3197 |
en |
dc.identifier.spage |
16 |
en |
dc.identifier.epage |
26 |
en |