dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Zikidis, K |
en |
dc.date.accessioned |
2014-03-01T02:48:35Z |
|
dc.date.available |
2014-03-01T02:48:35Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33927 |
|
dc.subject |
Computer Simulation |
en |
dc.subject |
Fuzzy Model |
en |
dc.subject |
Fuzzy Reasoning |
en |
dc.subject |
Fuzzy Rules |
en |
dc.subject |
Supervised Learning |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Output Error |
en |
dc.subject |
takagi sugeno kang |
en |
dc.title |
A New On-Line Structure and Parameter Learning Architecture for Fuzzy Modeling, Based on Neural and Fuzzy Techniques |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/3-540-64574-8_423 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-64574-8_423 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Functional reasoning or the Takagi-Sugeno-Kang model is a fuzzy reasoning method aiming at numerical accuracy and has found wide use in fuzzy modeling. In this method, each rule consists of a fuzzy implication and a functional consequence part. In this work, a new, online identification method for such a system is presented, for supervised learning tasks. Structure identification is executed |
en |
heal.journalName |
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems |
en |
dc.identifier.doi |
10.1007/3-540-64574-8_423 |
en |