dc.contributor.author |
Tsapatsoulis, N |
en |
dc.contributor.author |
Leonidou, M |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:48:37Z |
|
dc.date.available |
2014-03-01T02:48:37Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33955 |
|
dc.subject |
Facial Expression Recognition |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Feature Vector |
en |
dc.subject |
Time Scale |
en |
dc.subject |
Transition Matrix |
en |
dc.subject |
Hidden Markov Model |
en |
dc.subject |
Optical Flow |
en |
dc.title |
Facial expression recognition using HMM with observation dependent transition matrix |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MMSP.1998.738918 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MMSP.1998.738918 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
An expression recognition technique is proposed based on the hidden Markov models (HMM) ability to deal with time sequential data and to provide time scale invariability as well as a learning capability. A feature vector sequence is used for this purpose, which relies on optical flow extraction, as well as directional filtering of the motion field. Segmentation and identification of |
en |
heal.journalName |
Multimedia Signal Processing |
en |
dc.identifier.doi |
10.1109/MMSP.1998.738918 |
en |