dc.contributor.author |
Kounadis Anthony, N |
en |
dc.date.accessioned |
2014-03-01T02:48:40Z |
|
dc.date.available |
2014-03-01T02:48:40Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34004 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032278361&partnerID=40&md5=833d494f81bf80cac37c14fe80d372d8 |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Impact testing |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Autonomous lumped mass systems |
en |
dc.subject.other |
Dynamic buckling |
en |
dc.subject.other |
Impulse Momentum Law |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
Geometric approach for dynamic buckling of autonomous lumped mass systems under impact |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
An efficient and readily applied geometric approach for establishing `exact' dynamic buckling loads for autonomous nondissipative/dissipative discrete systems under step loading is extended to the case of dynamic buckling of a cantilever lumped-mass system under impact loading. Fully plastic impact due to a striking body falling freely from a given height is postulated. For such a nonlinear initial-value problem, one has to determine the initial velocities which are functions of unknown quantities. These can be determined only implicitly by employing the Law of Impulse Momentum. This renders application of all powerful numerical integration schemes very difficult, in particular when a multi-parameter discussion is needed. On the contrary, the proposed geometric approach allows a direct, very simple and reliable solution. |
en |
heal.publisher |
Computational Mechanics Inc, Billerica, MA, United States |
en |
heal.journalName |
International Conference on Structures Under Shock and Impact, SUSI |
en |
dc.identifier.spage |
13 |
en |
dc.identifier.epage |
29 |
en |