HEAL DSpace

On the definition of entropy and temperature and on the energy interactions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kouremenos, DA en
dc.date.accessioned 2014-03-01T02:48:41Z
dc.date.available 2014-03-01T02:48:41Z
dc.date.issued 1998 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34015
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0032311963&partnerID=40&md5=855ed2a37d312c3337170bbcf3d17bde en
dc.subject.other Differential equations en
dc.subject.other Energy transfer en
dc.subject.other Entropy en
dc.subject.other Mathematical transformations en
dc.subject.other Temperature en
dc.subject.other Vectors en
dc.subject.other Energy interactions en
dc.subject.other Thermodynamics en
dc.title On the definition of entropy and temperature and on the energy interactions en
heal.type conferenceItem en
heal.publicationDate 1998 en
heal.abstract The thermodynamic systems considered here are those that can be described by using only two macroscopic variables. For this purpose the specific volume v and the specific internal energy u are used while the pressure function p(u,v) is supposed to be known. It is shown that by a suitable mathematical transformation of variables, the pair (u,v) can be replaced by the pair of functions temperature T(u,v) and entropy s(u,v) that are defined simultaneously by a proposed generic system of differential equations without using the concept of heat. To show the authenticity of these definitions some solutions of this generic system of differential equations are given and in addition to, the special case of the perfect gas is obtained as one of the results. It is proposed to add to the conventional concepts of work and heat a third constitutive component, the throttling. With it the local efficiency η of a differential thermodynamic change can be defined. In addition this allows for the deduction of the relation (pdv+du)≥0 as a consequence. The heat-work energy interactions with a thermodynamic system are taking place mostly through an enclosing boundary wall. As these two different forms of energy flow cross the boundary wall, they undergo some transformation. As a result, the heat and work flow through the wall from/to the outer space to/from the system considered may change, although its algebraic sum, the total energy transferred, retains its initial value. Vector notation is used to facilitate the description of this transformation of energy crossing a boundary wall. en
heal.publisher ASME, Fairfield, NJ, United States en
heal.journalName American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES en
dc.identifier.volume 38 en
dc.identifier.spage 221 en
dc.identifier.epage 233 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής