HEAL DSpace

Impact of the error function selection in neural network-based classifiers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Falas, Tasos en
dc.contributor.author Stafylopatis, Andreas-Georgios en
dc.date.accessioned 2014-03-01T02:48:45Z
dc.date.available 2014-03-01T02:48:45Z
dc.date.issued 1999 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34084
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0033352950&partnerID=40&md5=b18460589c9a560cb4f1f1c6b87ecd0f en
dc.subject.other Backpropagation en
dc.subject.other Computational complexity en
dc.subject.other Error analysis en
dc.subject.other Functions en
dc.subject.other Learning algorithms en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Multilayer neural networks en
dc.subject.other Problem solving en
dc.subject.other Kalman-Kwasny error functions en
dc.subject.other Maximum likelihood functions en
dc.subject.other Mean absolute error functions en
dc.subject.other Feedforward neural networks en
dc.title Impact of the error function selection in neural network-based classifiers en
heal.type conferenceItem en
heal.publicationDate 1999 en
heal.abstract This paper presents the results of a comparative study on the impact of various error functions in multi-layer feed-forward neural networks used for classification problems. The objective is the comparison of the properties of the error functions, both in terms of the training speed and the generalization ability. In an effort to avoid complexities introduced by more advanced learning algorithms, the simple back-propagation with momentum algorithm has been employed. A number of classification problems were solved with neural networks that have been trained with the usual mean square error function, the mean absolute error function, the cross-entropy or maximum likelihood function, the Kalman-Kwasny error function, as well as a novel error function designed by the authors. The results indicate that, in most problems examined, an error function other than the usual mean square gives a better performance, both in terms of the number of epochs needed for training, as well as the obtained generalization trained network. en
heal.publisher IEEE, United States en
heal.journalName Proceedings of the International Joint Conference on Neural Networks en
dc.identifier.volume 3 en
dc.identifier.spage 1799 en
dc.identifier.epage 1804 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής