HEAL DSpace

On-line dynamic security assessment of isolated networks integrating large wind power production

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pecas Lopes, JA en
dc.contributor.author Hatziargyriou, N en
dc.contributor.author Vasconcelos, M en
dc.contributor.author Karapidakis, E en
dc.contributor.author Fidalgo, J en
dc.date.accessioned 2014-03-01T02:48:46Z
dc.date.available 2014-03-01T02:48:46Z
dc.date.issued 1999 en
dc.identifier.issn 0309524X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34089
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0343183038&partnerID=40&md5=a3023e03c60f74d132003cd8a840d24f en
dc.subject.other Decision theory en
dc.subject.other Electric power generation en
dc.subject.other Electric power system protection en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Trees (mathematics) en
dc.subject.other Control advice for renewable energy power (CARE) systems en
dc.subject.other Isolated power systems en
dc.subject.other Wind power en
dc.subject.other control method en
dc.subject.other on-line technique en
dc.subject.other wind power control en
dc.subject.other wind power system en
dc.title On-line dynamic security assessment of isolated networks integrating large wind power production en
heal.type conferenceItem en
heal.publicationDate 1999 en
heal.abstract The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed.The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed. en
heal.publisher Multi-Science Publishing Co, Ltd, Brentwood, United Kingdom en
heal.journalName Wind Engineering en
dc.identifier.volume 23 en
dc.identifier.issue 2 en
dc.identifier.spage 107 en
dc.identifier.epage 117 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής