dc.contributor.author |
Pecas Lopes, JA |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.contributor.author |
Vasconcelos, M |
en |
dc.contributor.author |
Karapidakis, E |
en |
dc.contributor.author |
Fidalgo, J |
en |
dc.date.accessioned |
2014-03-01T02:48:46Z |
|
dc.date.available |
2014-03-01T02:48:46Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0309524X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34089 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0343183038&partnerID=40&md5=a3023e03c60f74d132003cd8a840d24f |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Electric power generation |
en |
dc.subject.other |
Electric power system protection |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.subject.other |
Control advice for renewable energy power (CARE) systems |
en |
dc.subject.other |
Isolated power systems |
en |
dc.subject.other |
Wind power |
en |
dc.subject.other |
control method |
en |
dc.subject.other |
on-line technique |
en |
dc.subject.other |
wind power control |
en |
dc.subject.other |
wind power system |
en |
dc.title |
On-line dynamic security assessment of isolated networks integrating large wind power production |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed.The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed. |
en |
heal.publisher |
Multi-Science Publishing Co, Ltd, Brentwood, United Kingdom |
en |
heal.journalName |
Wind Engineering |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
107 |
en |
dc.identifier.epage |
117 |
en |