dc.contributor.author |
Katsaounis, GM |
en |
dc.contributor.author |
Papazoglou, VJ |
en |
dc.date.accessioned |
2014-03-01T02:48:46Z |
|
dc.date.available |
2014-03-01T02:48:46Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34100 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0033237918&partnerID=40&md5=8a6749bad5bf9ad74758d60b7314ffb0 |
en |
dc.subject |
Airy functions |
en |
dc.subject |
Buckling |
en |
dc.subject |
Gravity |
en |
dc.subject |
Risers |
en |
dc.subject |
Torsion |
en |
dc.subject.other |
buckling |
en |
dc.subject.other |
conference proceeding |
en |
dc.subject.other |
gravity |
en |
dc.subject.other |
riser |
en |
dc.subject.other |
torsion |
en |
dc.subject.other |
buckling |
en |
dc.subject.other |
conference proceedings |
en |
dc.subject.other |
gravity |
en |
dc.subject.other |
pipe |
en |
dc.subject.other |
torsion |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Torque |
en |
dc.subject.other |
Torsional stress |
en |
dc.subject.other |
Airy functions |
en |
dc.subject.other |
Nonlinear equilibrium equations |
en |
dc.subject.other |
Torsional buckling |
en |
dc.subject.other |
Marine risers |
en |
dc.title |
Torsional buckling of vertical risers |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper the problem of buckling of vertical risers due to an applied torque is solved. The vertical riser is modelled as a column, having axial, flexural and torsional stiffness. The column is subjected to gravity, hydrostatic loading, tension and a torsional moment. The general non-linear equilibrium equations are linearized around the vertical configuration and a system of coupled differential equations having variable coefficients is derived. A solution, expressed in terms of Airy functions, is found. Graphs of the critical torque, plotted against the length of the riser and the effective tension at the bottom, are presented. Several boundary conditions at the end of the riser are examined. The influence of the low bending stiffness of the structure is discussed and closed form asymptotic formulae are derived for this case. These results are compared against numerically obtained data using the Finite Element method. |
en |
heal.publisher |
International Society of Offshore and Polar Engineers |
en |
heal.journalName |
Proceedings of the 1999 Ninth International Offshore and Polar Engineering Conference |
en |
dc.identifier.spage |
248 |
en |
dc.identifier.epage |
254 |
en |