dc.contributor.author |
Papadimitriou, AG |
en |
dc.contributor.author |
Bouckovalas, GD |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.date.accessioned |
2014-03-01T02:48:46Z |
|
dc.date.available |
2014-03-01T02:48:46Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34103 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0033494918&partnerID=40&md5=b392b88102598524e4f7d32850dd4341 |
en |
dc.subject.other |
conference proceedings |
en |
dc.subject.other |
cyclic loading |
en |
dc.subject.other |
earthquake engineering |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
soil dynamics |
en |
dc.title |
Use of elastoplasticity to simulate cyclic sand behavior |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The presented elastoplastic model for sands combines a Ramberg-Osgood non-linear hysteretic formulation at small and intermediate cyclic shear strains (< 10-2 %) and a bounding surface plasticity formulation at larger strains. The emphasis is on the explicit use of the State Parameter and on the effect of fabric evolution during monotonic and cyclic loading. Comparison with experiments shows that it is possible to predict quantitatively all basic aspects of cyclic behavior, using the same set of density independent model parameters. Namely: a) the degradation of shear modulus and the concurrent increase of hysteretic damping ratio with cyclic shear strain, b) the rates of plastic shear strain and excess pore pressure accumulation with number of cycles, and c) the resistance to liquefaction. |
en |
heal.publisher |
A.A.Balkema |
en |
heal.journalName |
Earthquake geotechnical engineering. Proceedings of the 2nd international conference on earthquake geotechnical engineering, Lisbon, June 1999. (3 vols.). |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
130 |
en |