dc.contributor.author |
Drositis, I |
en |
dc.contributor.author |
Goumas, G |
en |
dc.contributor.author |
Koziris, N |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.date.accessioned |
2014-03-01T02:48:58Z |
|
dc.date.available |
2014-03-01T02:48:58Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34164 |
|
dc.subject |
Discrete Group |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Linear Independence |
en |
dc.subject |
Loop Groups |
en |
dc.subject |
Orthogonal Projection |
en |
dc.subject |
Projective Space |
en |
dc.subject |
Theoretical Analysis |
en |
dc.title |
Evaluation of Loop Grouping Methods Based on Orthogonal Projection Spaces |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICPP.2000.876163 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICPP.2000.876163 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
This paper compares three similar loop-grouping methods. All methods are based on projecting the n-di- mensional iteration space Jn onto a k-dimensional one, called the projected space, using (n-k) linear independent vectors. The dimension k is selected differently in each method giving various results. The projected space is di- vided into discrete groups of related iterations, which are assigned to |
en |
heal.journalName |
International Conference on Parallel Processing |
en |
dc.identifier.doi |
10.1109/ICPP.2000.876163 |
en |