dc.contributor.author |
Fotakis, D |
en |
dc.contributor.author |
Nikoletseas, S |
en |
dc.contributor.author |
Papadopoulou, V |
en |
dc.contributor.author |
Spirakis, P |
en |
dc.date.accessioned |
2014-03-01T02:48:59Z |
|
dc.date.available |
2014-03-01T02:48:59Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34187 |
|
dc.subject |
Graph Coloring Problem |
en |
dc.subject |
Minimum Distance |
en |
dc.subject |
Planar Graph |
en |
dc.subject |
Radio Networks |
en |
dc.subject |
Frequency Assignment Problem |
en |
dc.title |
NP-Completeness Results and Efficient Approximations for Radiocoloring in Planar Graphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/3-540-44612-5_32 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-44612-5_32 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequencies to transmitters exploiting frequency reuse while keeping signal interference to acceptable levels. The FAP is usually modelled by variations of the graph coloring problem. The Radiocoloring (RC) of a graph G(V; E) is an assignment function : V ! IN such that j (u) (v)j 2, |
en |
heal.journalName |
Mathematical Foundations of Computer Science |
en |
dc.identifier.doi |
10.1007/3-540-44612-5_32 |
en |