dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:49:01Z |
|
dc.date.available |
2014-03-01T02:49:01Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34224 |
|
dc.subject |
Adaptive Algorithm |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Non-linear Model |
en |
dc.subject |
Nonlinear Model |
en |
dc.subject |
Traffic Model |
en |
dc.subject |
Traffic Prediction |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.subject |
Neural Network |
en |
dc.title |
Traffic prediction and network resources estimation of VBR MPEG2 sources using adaptively trained neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MELCON.2000.880034 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MELCON.2000.880034 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, a unified non-linear modeling is proposed appropriate both for on-line traffic prediction and network resources estimation in the case of VBR MPEG-2 coded video sources. A feedforward neural network architecture with tapped delay inputs is adopted to implement the nonlinear model structure. For on-line traffic modeling, a weight adaptation algorithm is activated, to modify the model parameters, |
en |
heal.journalName |
MELECON - IEEE Mediterranean Electrotechnical Conference |
en |
dc.identifier.doi |
10.1109/MELCON.2000.880034 |
en |