dc.contributor.author |
Frossyniotis, D |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:49:02Z |
|
dc.date.available |
2014-03-01T02:49:02Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34239 |
|
dc.subject |
Classification System |
en |
dc.subject |
Classifier System |
en |
dc.subject |
Divide and Conquer |
en |
dc.subject |
Fuzzy C Mean |
en |
dc.subject |
Support Vector Machine |
en |
dc.subject |
Unsupervised Learning |
en |
dc.title |
A Multi-SVM Classification System |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/3-540-48219-9_20 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-48219-9_20 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
It has been shown by several researchers that multi-classifier systems can result in effective solutions to difficult tasks. In this work, we propose a multi-classifier system based on both supervised and unsupervised learning. According to the principle of “divide-and-conquer”, the input space is partitioned into overlapping subspaces and Support Vector Machines (SVMs) are subsequently used to solve the respective classification |
en |
heal.journalName |
Multiple Classifier Systems |
en |
dc.identifier.doi |
10.1007/3-540-48219-9_20 |
en |