dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Milis, I |
en |
dc.date.accessioned |
2014-03-01T02:49:03Z |
|
dc.date.available |
2014-03-01T02:49:03Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34259 |
|
dc.subject |
Polynomial Time Approximation Scheme |
en |
dc.subject |
Scheduling Problem |
en |
dc.subject |
Min Sum |
en |
dc.title |
Designing PTASs for MIN-SUM Scheduling Problems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/3-540-44669-9_50 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-44669-9_50 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
We review approximability and inapproximability results for MIN-SUM scheduling problems and we focus on two main techniques for designing polynomial time approximation schemes for this class of problems: ratio partitioning and time partitioning. For both techniques we present examples which illustrate their efficient use. |
en |
heal.journalName |
Fundamentals of Computation Theory |
en |
dc.identifier.doi |
10.1007/3-540-44669-9_50 |
en |