dc.contributor.author |
Raptis, S |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Karagianni, H |
en |
dc.date.accessioned |
2014-03-01T02:49:05Z |
|
dc.date.available |
2014-03-01T02:49:05Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34288 |
|
dc.subject |
Curse of Dimensionality |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Genetics |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.subject |
Neural Network |
en |
dc.title |
Optimal Genetic Representation of Complete Strictly-Layered Feedforward Neural Networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/3-540-45723-2_15 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-45723-2_15 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The automatic eveolution of neural networks is both an attractive and a rewarding task. The connectivity matrix is the most common way of directly encoding a neural network for the purpose of genetic optimization. However, this representation presents several disadvantages mostly stemming from its inherent redundancy and its lack of rebustness. We propose a novel representation scheme for encoding complete |
en |
heal.journalName |
International Work-Conference on Artificial and NaturalNeural Networks |
en |
dc.identifier.doi |
10.1007/3-540-45723-2_15 |
en |