dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:49:07Z |
|
dc.date.available |
2014-03-01T02:49:07Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34326 |
|
dc.subject |
Adaptive Neural Network |
en |
dc.subject |
Dynamic Adaptation |
en |
dc.subject |
Efficient Algorithm |
en |
dc.subject |
linear functionals |
en |
dc.subject |
Non Linear System |
en |
dc.subject |
Recursive Estimation |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Taylor Series |
en |
dc.subject |
Traffic Prediction |
en |
dc.subject |
First Order |
en |
dc.title |
Adaptable neural networks for modeling recursive non-linear systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDSP.2002.1028306 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDSP.2002.1028306 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
An efficient algorithm for recursive estimation of a non-linear autoregression (NAR) model is proposed. In particular, the model parameters are dynamically adapted through time so that (a) the model response, after the parameter updating, satisfies the current conditions and (b) a minimal modification of the model parameters is accomplished. The first condition is expressed by applying a first-order Taylor series |
en |
heal.journalName |
International Conference on Digital Signal Processing |
en |
dc.identifier.doi |
10.1109/ICDSP.2002.1028306 |
en |