dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Zikidis, K |
en |
dc.date.accessioned |
2014-03-01T02:49:10Z |
|
dc.date.available |
2014-03-01T02:49:10Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34365 |
|
dc.subject |
Adaptive Resonance Theory |
en |
dc.subject |
Chaotic Time Series |
en |
dc.subject |
Function Approximation |
en |
dc.subject |
Fuzzy Model |
en |
dc.subject |
Fuzzy Rules |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Linear Equations |
en |
dc.subject |
neuro fuzzy |
en |
dc.subject |
Parameter Identification |
en |
dc.subject |
Process Model |
en |
dc.subject |
Structure Learning |
en |
dc.subject |
First Order |
en |
dc.subject |
takagi sugeno kang |
en |
dc.title |
NeuroFAST: high accuracy neuro-fuzzy modeling |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICAIS.2002.1048093 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICAIS.2002.1048093 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Most fuzzy modeling algorithms rely either on simplistic (grid type) or off-line (trial-and-error type) structure identification methods. The proposed neurofuzzy modeling architecture, NeuroFAST, is an on-line, structure and parameter learning algorithm, featuring high function approximation accuracy. It is based on the first order Takagi-Sugeno-Kang (TSK) model (functional reasoning), where the consequence part of each fuzzy rule is a linear equation |
en |
heal.journalName |
IEEE International Conference on Artificial Intelligence Systems |
en |
dc.identifier.doi |
10.1109/ICAIS.2002.1048093 |
en |