dc.contributor.author |
Athanassoulis, GA |
en |
dc.contributor.author |
Belibassakis, KA |
en |
dc.date.accessioned |
2014-03-01T02:49:12Z |
|
dc.date.available |
2014-03-01T02:49:12Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34400 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036440568&partnerID=40&md5=8cf94e717fd7a351fac0bad837f14fa6 |
en |
dc.subject |
Coupled-modes |
en |
dc.subject |
Nonlinear waves |
en |
dc.subject |
Variable bathymetry |
en |
dc.subject.other |
Dispersion (waves) |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Wave transmission |
en |
dc.subject.other |
Nonlinear waves |
en |
dc.subject.other |
Bathymetry |
en |
dc.title |
A non-linear coupled-mode model for water waves over a general bathymetry |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
A non-linear coupled-mode system of horizontal equations is derived with the aid of Luke's (1967) variational principle, which models the evolution of nonlinear water waves in intermediate depth over a general bathymetry. The vertical structure of the wave field is exactly represented by means of a local-mode series expansion of the wave potential, Athanassoulis & Belibassakis (2000). This series contains the usual propagating and evanescent modes, plus two additional modes, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The system fully accounts for the effects of non-linearity and dispersion. |
en |
heal.journalName |
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
637 |
en |
dc.identifier.epage |
644 |
en |