HEAL DSpace

Knowledge-based land use classification from IKONOS imagery for Arkadi, Crete, Greece

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argialas, DP en
dc.contributor.author Goudoula, V en
dc.date.accessioned 2014-03-01T02:49:14Z
dc.date.available 2014-03-01T02:49:14Z
dc.date.issued 2002 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34432
dc.subject Classification features en
dc.subject ERDAS IMAGINE en
dc.subject Expert system en
dc.subject Hierarchical classification en
dc.subject Rule-based classification en
dc.subject Spatial model en
dc.subject.other Color image processing en
dc.subject.other Decision theory en
dc.subject.other Imaging systems en
dc.subject.other Land use en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Object recognition en
dc.subject.other Photointerpretation en
dc.subject.other Statistical methods en
dc.subject.other Vegetation en
dc.subject.other Digital terrain model en
dc.subject.other Expert Classifier model en
dc.subject.other Hierarchical classification en
dc.subject.other Rule-based classification en
dc.subject.other Expert systems en
dc.title Knowledge-based land use classification from IKONOS imagery for Arkadi, Crete, Greece en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.463282 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.463282 en
heal.publicationDate 2002 en
heal.abstract The objective of the present research effort was the investigation of expert system classification techniques for land use mapping from very high resolution images for a typical Greek landscape. Data used included an IKONOS image of the Arkadi area in Crete acquired on September 2000, and a digital terrain model. Photointerpretation was carried out using color composites, band ratios and maps of scale 1:5.000 and 1:50.000. Maximum likelihood was used for per pixel supervised classification and its accuracy was 72%. A knowledge base containing 51 rules, 44 hypotheses and 12 variables was developed in the Expert Classifier module of ERDAS Imagine. A hierarchical organization of thematic classes was developed in four levels through photointerpretation and study of the spectral reflectance diagrams and thematic class histograms. The image was first classified into three general categories: water-like, vegetation-like and soil-like materials. These were then separated into sub-classes. Classification rules were enriched with ancillary data such as the slopes, the road network, the NDVI vegetation index, the results of a spatial model computing texture, and indices reflecting the polygon shape and perimeter. Overall accuracy of the classification with the expert system was 82%. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.463282 en
dc.identifier.volume 4886 en
dc.identifier.spage 193 en
dc.identifier.epage 204 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής