HEAL DSpace

Mapping urban green from IKONOS data by an object-oriented knowledge-base and fuzzy logic

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Demetre, A en
dc.contributor.author Panos, D en
dc.date.accessioned 2014-03-01T02:49:14Z
dc.date.available 2014-03-01T02:49:14Z
dc.date.issued 2002 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34437
dc.subject eCognition en
dc.subject Fuzzy logic en
dc.subject Land use en
dc.subject Object-oriented knowledge base en
dc.subject Remote sensing en
dc.subject Urban green en
dc.subject.other Fuzzy sets en
dc.subject.other Image analysis en
dc.subject.other Image segmentation en
dc.subject.other Knowledge based systems en
dc.subject.other Land use en
dc.subject.other Mapping en
dc.subject.other Object oriented programming en
dc.subject.other Urban planning en
dc.subject.other Vegetation en
dc.subject.other Object oriented image analysis en
dc.subject.other Urban green en
dc.subject.other Remote sensing en
dc.title Mapping urban green from IKONOS data by an object-oriented knowledge-base and fuzzy logic en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.463281 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.463281 en
heal.publicationDate 2002 en
heal.abstract Urban green is recognized as an important functional element of the city, which affects directly the standard of living. The present paper is concerned with the study of urban green by means of object-oriented image analysis of high-resolution IKONOS data. More specifically, the potential for detecting urban green and quantitatively assessing it was explored. The analysis included two levels of segmentation and classification. On the first level, objects to which the image was segmented were subsequently classified according to a vegetation index (Scaled MSAVI) to areas with dense, thin or no vegetation. On the second level the image was classified in larger areas that simulated building blocks according to the relative area of vegetation, in order to create a thematic map of urban green density. The evaluation of the results indicated that detection and quantitative assessment of urban green was achieved with satisfactory accuracy. The use of additional data (DEM, hyperspectral, GIS) will allow a more detail study of the urban green from high resolution data by means of object-oriented image analysis. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.463281 en
dc.identifier.volume 4886 en
dc.identifier.spage 96 en
dc.identifier.epage 106 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής