HEAL DSpace

Oil spill detection: SAR multi-scale segmentation & object features evaluation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T02:49:15Z
dc.date.available 2014-03-01T02:49:15Z
dc.date.issued 2002 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34442
dc.subject Hierarchical classification network en
dc.subject Knowledge base en
dc.subject Multi-scale segmentation en
dc.subject Object image analysis en
dc.subject Oil spills en
dc.subject SAR en
dc.subject.other Feature extraction en
dc.subject.other Fuzzy sets en
dc.subject.other Image analysis en
dc.subject.other Image segmentation en
dc.subject.other Marine pollution en
dc.subject.other Oil spills en
dc.subject.other Radar imaging en
dc.subject.other Synthetic aperture radar en
dc.subject.other Multi scale segmentation en
dc.subject.other Object feature extraction en
dc.subject.other Remote sensing en
dc.title Oil spill detection: SAR multi-scale segmentation & object features evaluation en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.462518 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.462518 en
heal.publicationDate 2002 en
heal.abstract The use of image segmentation and object feature extraction in order to classify SAR image objects into oil spill or other features (oil slick look-alikes), it is widely acceptable in oil spill detection research. For this purpose, a number of features (geometric, surrounding, backscattering, etc.) are usually calculated and introduced in a decision support procedure. The aim of the present study is presentation, analysis and evaluation of the above features in order to produce general rules adequate to identify oil spills in any SAR image. SAR image processing is based on a new multi-segmentation technique. As a first step, image objects in different scales are extracted using the multi-segmentation procedure. Following segmentation, a hierarchical network of image objects is developed, which simultaneously presents object information and fuzzy rules for classification. In experiments implemented in SAR images, the method developed has successfully detected oil spills and look alikes. Texture behavior most contributes to detection (texture characteristics 80%), followed by physical behavior (actual backscatter characteristics 53%, spot surroundings 26%) and finally geometry behavior (geometrical characteristics 2%). en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.462518 en
dc.identifier.volume 4880 en
dc.identifier.spage 77 en
dc.identifier.epage 87 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής