dc.contributor.author |
Stamatis, A |
en |
dc.contributor.author |
Kamboukos, Ph |
en |
dc.contributor.author |
Aretakis, N |
en |
dc.contributor.author |
Nathioudakis, K |
en |
dc.date.accessioned |
2014-03-01T02:49:15Z |
|
dc.date.available |
2014-03-01T02:49:15Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34443 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0037000446&partnerID=40&md5=b92eab19e16ff6856064dde09154d924 |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Adaptive model |
en |
dc.subject.other |
Nonlinear system solver |
en |
dc.subject.other |
Turbofan engines |
en |
dc.title |
On board adaptive models: A general framework and implementation aspects |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The principles on which an adaptive engine performance model is based are first discussed. The mathematical ways of matching given performance data are presented and their implications for practical implementation are discussed. The consequences of using a number of measurements equal or fewer than the number of adaptive parameters are analysed. The numerical behaviour of an adaptive model is also discussed. Solution methods based on non-linear system solvers are compared to methods using optimisation techniques. Execution time requirements are also discussed for the different approaches and implications for possible on-line or off-line applications are evaluated. |
en |
heal.journalName |
American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
139 |
en |
dc.identifier.epage |
146 |
en |