dc.contributor.author |
Jiang, J |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.date.accessioned |
2014-03-01T02:49:18Z |
|
dc.date.available |
2014-03-01T02:49:18Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34480 |
|
dc.subject |
Anomaly Detection |
en |
dc.subject |
Early Detection |
en |
dc.subject |
Fault Recovery |
en |
dc.subject |
Network Traffic |
en |
dc.subject |
Statistical Properties |
en |
dc.subject |
Traffic Prediction |
en |
dc.subject |
Dynamic Threshold |
en |
dc.title |
A network fault diagnostic approach based on a statistical traffic normality prediction algorithm |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/GLOCOM.2003.1258768 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/GLOCOM.2003.1258768 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Early detection of network failures and performance degradations is a key to rapid fault recovery and robust networking, and has been receiving increasing attention lately. In this paper we present a fault diagnostic methodology, based on the characterization of the dynamic statistical properties of traffic normality in order to detect network anomalies. Anomaly detection is based on the concept that |
en |
heal.journalName |
Global Telecommunications Conference, . GLOBECOM . IEEE |
en |
dc.identifier.doi |
10.1109/GLOCOM.2003.1258768 |
en |