dc.contributor.author |
Anagnostopoulos, I |
en |
dc.contributor.author |
Anagnostopoulos, C |
en |
dc.contributor.author |
Vergados, D |
en |
dc.contributor.author |
Loumos, V |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T02:49:18Z |
|
dc.date.available |
2014-03-01T02:49:18Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34497 |
|
dc.subject |
Information System |
en |
dc.subject |
Search Engine |
en |
dc.subject |
Web Pages |
en |
dc.subject |
Neural Network |
en |
dc.title |
Classification of a Large Web Page Collection Applying a GRNN Architecture |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-39737-3_5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-39737-3_5 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
This paper proposes an information system that classifies web pages according a taxonomy, which is mainly used from seven search engines/ directories. The proposed classifier is a four-layer Generalised Regression Neural Network (GRNN) that aims to perform the information segmentation according to web page features. Many types of web pages were used in order to evaluate the robustness of the |
en |
heal.journalName |
International Symposium on Computer and Information Sciences |
en |
dc.identifier.doi |
10.1007/978-3-540-39737-3_5 |
en |