dc.contributor.author |
Papanikolaou, A |
en |
dc.contributor.author |
Miranda, M |
en |
dc.contributor.author |
Catthoor, F |
en |
dc.contributor.author |
Corporaal, H |
en |
dc.contributor.author |
Man, H |
en |
dc.contributor.author |
Roest, D |
en |
dc.contributor.author |
Stucchi, M |
en |
dc.contributor.author |
Maex, K |
en |
dc.date.accessioned |
2014-03-01T02:49:19Z |
|
dc.date.available |
2014-03-01T02:49:19Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34513 |
|
dc.subject |
Case Study |
en |
dc.subject |
pareto optimality |
en |
dc.subject |
Power Consumption |
en |
dc.subject |
Real Time |
en |
dc.title |
Global interconnect trade-off for technology over memory modules to application level: case study |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/639929.639954 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/639929.639954 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we show how to exploit energy-delay trade-offs that exist due to the variation of the technology parameters for the implementation of interconnect wires. We also evaluate how these trade-offs can be propagated to the memory module level, so we can minimise the power consumption of the entire memory organisation (i.e., memories and connections between them). Our approach |
en |
heal.journalName |
System-Level Interconnect Prediction |
en |
dc.identifier.doi |
10.1145/639929.639954 |
en |