HEAL DSpace

Intracranial current signals classification using multivariate autoregressive modeling and simulated annealing technique

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vasios, CE en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Ventouras, EM en
dc.contributor.author Papageorgiou, CC en
dc.contributor.author Nikita, KS en
dc.contributor.author Kontaxakis, VP en
dc.contributor.author Christodoulou, GN en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T02:49:25Z
dc.date.available 2014-03-01T02:49:25Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34591
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-2642555691&partnerID=40&md5=594066293da95cb6ce984ebef6f669bc en
dc.subject Classification en
dc.subject ERPs en
dc.subject Intracranial Current Source en
dc.subject Multivariate Autoregression en
dc.subject Neural Network en
dc.subject Simulated Annealing en
dc.subject.other Algorithms en
dc.subject.other Brain en
dc.subject.other Diseases en
dc.subject.other Neurology en
dc.subject.other Pathology en
dc.subject.other Patient monitoring en
dc.subject.other Regression analysis en
dc.subject.other Signal processing en
dc.subject.other Simulated annealing en
dc.subject.other Classification en
dc.subject.other ERPs en
dc.subject.other Intracranial current source en
dc.subject.other Multivariate autoregression en
dc.subject.other Bioelectric phenomena en
dc.title Intracranial current signals classification using multivariate autoregressive modeling and simulated annealing technique en
heal.type conferenceItem en
heal.publicationDate 2003 en
heal.abstract Intracranial currents computed by the scalp-recorded ERPs, provide information on the non-observable electrical phenomena taking place in the brain, related to the cognitive mechanisms induced by the experimental task used in the ERP recording procedure. The use of current source waveforms, as input in classification systems, may provide robust classifiers due to the immediate relationship of the current sources to the brain electrical activity related to cognitive mechanisms. In the present work, a new method for the classification of intracranial current sources is proposed, combining the Multivariate Autoregressive model with the Simulated Annealing technique, in order to extract optimum features, in terms of the classification rate. The classification is implemented using a three-layer neural network (NN) trained with the back-propagation algorithm. The system was applied in the classification of normal controls and schizophrenic patients, providing classification rates of up to 100%. Furthermore, the clustering of intracranial source locations providing best classification performance may indicate relationships between the brain areas corresponding to these locations and pathological mechanisms. en
heal.journalName Proceedings of the IASTED International Conference on Biomedical Engineering en
dc.identifier.spage 33 en
dc.identifier.epage 38 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής