dc.contributor.author |
Pantelelis, NG |
en |
dc.contributor.author |
Maistros, G |
en |
dc.date.accessioned |
2014-03-01T02:49:33Z |
|
dc.date.available |
2014-03-01T02:49:33Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
08910138 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34608 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0842333129&partnerID=40&md5=b1480b660ca91793c23d08ae70ee27d0 |
en |
dc.subject |
Control |
en |
dc.subject |
Curing |
en |
dc.subject |
Dielectric cure monitoring |
en |
dc.subject |
Neural Networks |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Curing |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Identification (control systems) |
en |
dc.subject.other |
Isotherms |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Resin transfer molding |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Dielectric sensing |
en |
dc.subject.other |
Liquid composite molding (LCM) |
en |
dc.subject.other |
Glass fiber reinforced plastics |
en |
dc.title |
Online cure parameter identification using neural networks and dielectric sensing |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The proposed method will demonstrate that the main characteristics of the composite material production related to the cure process can be identified in real-time and in situ by the use of appropriate trained Neural Networks and the dielectric cure monitoring method. The dielectric cure monitoring, which relies on the interrogation of fully wetted dielectric sensors, is capable of determining the significant points during non-isothermal cure reactions The most appropriate property for this determination is the ionic conductivity in relation to the temperature changes which are either imposed by the process control environment or are created from the exothermic nature of the process. Neural Networks have been pre-trained using appropriate deviations around the nominal values of the material properties and can provide fast and accurate the exact material properties of the current batch. The suitability of the technique for process control of the cure is discussed together and the application of the dielectric cure monitoring method to a closed mould liquid composite moulding (RTM) using E-glass fibre reinforced polyester matrix. |
en |
heal.journalName |
International SAMPE Symposium and Exhibition (Proceedings) |
en |
dc.identifier.volume |
48 I |
en |
dc.identifier.spage |
353 |
en |
dc.identifier.epage |
366 |
en |