HEAL DSpace

Online cure parameter identification using neural networks and dielectric sensing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pantelelis, NG en
dc.contributor.author Maistros, G en
dc.date.accessioned 2014-03-01T02:49:33Z
dc.date.available 2014-03-01T02:49:33Z
dc.date.issued 2003 en
dc.identifier.issn 08910138 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34608
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0842333129&partnerID=40&md5=b1480b660ca91793c23d08ae70ee27d0 en
dc.subject Control en
dc.subject Curing en
dc.subject Dielectric cure monitoring en
dc.subject Neural Networks en
dc.subject.other Computer simulation en
dc.subject.other Curing en
dc.subject.other Dielectric materials en
dc.subject.other Identification (control systems) en
dc.subject.other Isotherms en
dc.subject.other Neural networks en
dc.subject.other Numerical methods en
dc.subject.other Online systems en
dc.subject.other Resin transfer molding en
dc.subject.other Sensors en
dc.subject.other Dielectric sensing en
dc.subject.other Liquid composite molding (LCM) en
dc.subject.other Glass fiber reinforced plastics en
dc.title Online cure parameter identification using neural networks and dielectric sensing en
heal.type conferenceItem en
heal.publicationDate 2003 en
heal.abstract The proposed method will demonstrate that the main characteristics of the composite material production related to the cure process can be identified in real-time and in situ by the use of appropriate trained Neural Networks and the dielectric cure monitoring method. The dielectric cure monitoring, which relies on the interrogation of fully wetted dielectric sensors, is capable of determining the significant points during non-isothermal cure reactions The most appropriate property for this determination is the ionic conductivity in relation to the temperature changes which are either imposed by the process control environment or are created from the exothermic nature of the process. Neural Networks have been pre-trained using appropriate deviations around the nominal values of the material properties and can provide fast and accurate the exact material properties of the current batch. The suitability of the technique for process control of the cure is discussed together and the application of the dielectric cure monitoring method to a closed mould liquid composite moulding (RTM) using E-glass fibre reinforced polyester matrix. en
heal.journalName International SAMPE Symposium and Exhibition (Proceedings) en
dc.identifier.volume 48 I en
dc.identifier.spage 353 en
dc.identifier.epage 366 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής