dc.contributor.author |
Pantelelis, NG |
en |
dc.contributor.author |
Karamitsos, A |
en |
dc.date.accessioned |
2014-03-01T02:49:34Z |
|
dc.date.available |
2014-03-01T02:49:34Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34617 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0141729289&partnerID=40&md5=c0884652b463641aff5602c40cd85385 |
en |
dc.subject |
Cure |
en |
dc.subject |
Neural Networks |
en |
dc.subject |
Real time |
en |
dc.subject |
Simulation |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Curing |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Thermosets |
en |
dc.subject.other |
Polymer composites |
en |
dc.subject.other |
Nonmetallic matrix composites |
en |
dc.title |
Real-time prediction of cure cycle performance in polymer composite processing using Neural Networks |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper the use of Neural Networks for the on-line prediction of cure cycle performance is presented. The need of an on-line fast tool for the prediction of the cure cycle characteristics according to real time measurements of the cure process is apparent for the whole polymer composite industry. Various Neural Network architectures and set-ups are presented, discussed and tested to provide the fastest and more reliable solution. The training of the Neural Networks is performed using a 1-D simulation tool. Finally, some ideas about the implementation of this tool in the on-line control of the cure process are presented. |
en |
heal.journalName |
Annual Technical Conference - ANTEC, Conference Proceedings |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
3280 |
en |
dc.identifier.epage |
3284 |
en |