HEAL DSpace

Utilizing support vector machines for the characterization of digital dermatological images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maglogiannis, I en
dc.contributor.author Zafiropoulos, EP en
dc.date.accessioned 2014-03-01T02:49:37Z
dc.date.available 2014-03-01T02:49:37Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/34640
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-1642394255&partnerID=40&md5=e2cffc5be222f9b460a79817a347a471 en
dc.subject Image analysis en
dc.subject Image classification en
dc.subject Malignant melanoma en
dc.subject Support vector machines en
dc.subject.other Algorithms en
dc.subject.other Dermatology en
dc.subject.other Feature extraction en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Skin en
dc.subject.other Statistical methods en
dc.subject.other Discriminant analysis en
dc.subject.other Dysplastic nevus en
dc.subject.other Image classification en
dc.subject.other Malignant melanoma en
dc.subject.other Skin lesions en
dc.subject.other Support vector machines en
dc.subject.other Image processing en
dc.title Utilizing support vector machines for the characterization of digital dermatological images en
heal.type conferenceItem en
heal.publicationDate 2003 en
heal.abstract In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions. The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic nevus. Border and color based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Although larger sample sizes are necessary to resolve these issues fully, the support vector machines algorithm performed excellently achieving a high percentage of correct classification (approximately 100%). Two other classification methods, the statistical discriminant analysis and the application of neural networks were applied also to the same problem and their efficiency was compared with the support vector machines algorithm performance. en
heal.journalName Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications en
dc.identifier.volume 3 en
dc.identifier.spage 1293 en
dc.identifier.epage 1297 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής