dc.contributor.author |
Antoniou, C |
en |
dc.contributor.author |
Ben-Akiva, M |
en |
dc.contributor.author |
Koutsopoulos, H |
en |
dc.date.accessioned |
2014-03-01T02:49:40Z |
|
dc.date.available |
2014-03-01T02:49:40Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/34679 |
|
dc.subject |
extended kalman filter |
en |
dc.subject |
Prediction Accuracy |
en |
dc.subject |
State Space Model |
en |
dc.subject |
Traffic Prediction |
en |
dc.subject |
unscented kalman filter |
en |
dc.title |
On-line calibration of traffic prediction models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ITSC.2004.1398876 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ITSC.2004.1398876 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A methodology for the on-line calibration of the speed-density relationship is formulated as a flexible state-space model. Applicable solution approaches are discussed and three of them (extended Kalman filter (EKF), iterated EKF, and unscented Kalman filter (UKF) are selected and presented in detail. An application of the methodology with freeway sensor data from two networks in Europe and the U.S. |
en |
heal.journalName |
International Conference on Intelligent Transportation |
en |
dc.identifier.doi |
10.1109/ITSC.2004.1398876 |
en |